Asymptotic Lower Bounds on Circular Chromatic Index of Snarks

نویسندگان

  • Martin Macaj
  • Ján Mazák
چکیده

We prove that the circular chromatic index of a cubic graph G with 2k vertices and chromatic index 4 is at least 3 + 2/k. This bound is (asymptotically) optimal for an infinite class of cubic graphs containing bridges. We also show that the constant 2 in the above bound can be increased for graphs with larger girth or higher connectivity. In particular, if G has girth at least 5, its circular chromatic index is at least 3 + 2.5/k. Our method gives an alternative proof that the circular chromatic index of the generalised type 1 Blanuša snark B1 m is 3 + 2/3m.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The circular chromatic index of Goldberg snarks

We determine the exact values of the circular chromatic index of the Goldberg snarks, and of a related family, the twisted Goldberg snarks.

متن کامل

Circular Chromatic Index of Generalized Blanusa Snarks

In his Master’s thesis, Ján Mazák proved that the circular chromatic index of the type 1 generalized Blanuša snark B n equals 3+ 2 n . This result provided the first infinite set of values of the circular chromatic index of snarks. In this paper we show the type 2 generalized Blanuša snark B n has circular chromatic index 3 + 1 b1+3n/2c . In particular, this proves that all numbers 3 + 1/n with...

متن کامل

The Circular Chromatic Index of Flower Snarks

We determine the circular chromatic index of flower snarks, by showing that χc(F3) = 7/2, χ ′ c(F5) = 17/5 and χ ′ c(Fk) = 10/3 for every odd integer k ≥ 7, where Fk denotes the flower snark on 4k vertices.

متن کامل

The hunting of a snark with total chromatic number 5

A snark is a cyclically-4-edge-connected cubic graph with chromatic index 4. In 1880, Tait proved that the Four-Color Conjecture is equivalent to the statement that every planar bridgeless cubic graph has chromatic index 3. The search for counter-examples to the FourColor Conjecture motivated the definition of the snarks. A k-total-coloring of G is an assignment of k colors to the edges and ver...

متن کامل

Diana Sasaki Simone Dantas Celina

Snarks are cubic bridgeless graphs of chromatic index 4 which had their origin in the search of counterexamples to the Four Color Conjecture. In 2003, Cavicchioli et al. proved that for snarks with less than 30 vertices, the total chromatic number is 4, and proposed the problem of finding (if any) the smallest snark which is not 4-total colorable. Several families of snarks have had their total...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013